On the functional equation $\frac{1}{p}\{f(\frac{x}{p})+\cdots+f(\frac{x+p-1}{p})\}=\lambda f(\mu x)$
نویسندگان
چکیده
منابع مشابه
the effect of functional/notional approach on the proficiency level of efl learners and its evaluation through functional test
in fact, this study focused on the following questions: 1. is there any difference between the effect of functional/notional approach and the structural approaches to language teaching on the proficiency test of efl learners? 2. can a rather innovative language test referred to as "functional test" ge devised so so to measure the proficiency test of efl learners, and thus be as much reliable an...
15 صفحه اولOn Hilbert Golab-Schinzel type functional equation
Let $X$ be a vector space over a field $K$ of real or complex numbers. We will prove the superstability of the following Go{l}c{a}b-Schinzel type equation$$f(x+g(x)y)=f(x)f(y), x,yin X,$$where $f,g:Xrightarrow K$ are unknown functions (satisfying some assumptions). Then we generalize the superstability result for this equation with values in the field of complex numbers to the case of an arbitr...
متن کاملstability of the quadratic functional equation
In the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{E}$$ isgiven where $sigma$ is an involution of the normed space $E$ and$k$ is a fixed positive integer. Furthermore we investigate theHyers-Ulam-Rassias stability of the functional equation. TheHyers-Ulam stability on unbounded domains is also studied.Applic...
متن کاملOn the associativity functional equation
Let [a, b] be any bounded closed real interval. The class of all continuous, nondecreasing, associative functions M : [a, b] → [a, b] fulfilling the boundary conditions M(a, a) = a and M(b, b) = b is described.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 1985
ISSN: 2156-2261
DOI: 10.1215/kjm/1250521114